The plates of a parallel plate capacitor are charged up to $100 \,volt$ . A $2 \,mm$ thick plate is inserted between the plates, then to maintain the same potential difference, the distance between the capacitor plates is increased by $1.6\, mm$. The dielectric constant of the plate is :-
$5$
$1.25$
$4$
$2.5$
When a slab of dielectric material is introduced between the parallel plates of a capacitor which remains connected to a battery, then charge on plates relative to earlier charge
The gap between the plates of a parallel plate capacitor of area $A$ and distance between plates $d$, is filled with a dielectric whose permittivity varies linearly from ${ \varepsilon _1}$ at one plate to ${ \varepsilon _2}$ at the other. The capacitance of capacitor is
A parallel plate capacitor having plates of area $S$ and plate separation $d$, has capacitance $C _1$ in air. When two dielectrics of different relative permittivities $\left(\varepsilon_1=2\right.$ and $\left.\varepsilon_2=4\right)$ are introduced between the two plates as shown in the figure, the capacitance becomes $C _2$. The ratio $\frac{ C _2}{ C _1}$ is
The capacity of a parallel plate condenser is $5\,\mu F$. When a glass plate is placed between the plates of the conductor, its potential becomes $1/8^{th}$ of the original value. The value of dielectric constant will be
A parallel plate condenser has a capacitance $50\,\mu F$ in air and $110\,\mu F$ when immersed in an oil. The dielectric constant $'k'$ of the oil is