Gujarati
10-1.Circle and System of Circles
medium

The point at which the normal to the circle ${x^2} + {y^2} + 4x + 6y - 39 = 0$ at the point $(2, 3)$ will meet the circle again, is

A

$(6, -9)$

B

$(6, 9)$

C

$(-6, -9)$

D

$(-6, 9)$

Solution

(c) Equation of normal will be $\frac{{x – 2}}{{2 + 2}} = \frac{{y – 3}}{{3 + 3}}$

$ \Rightarrow $$3x – 2y = 0$

$\Rightarrow x = \frac{{2y}}{3}$

Thus ${\left( {\frac{{2y}}{3}} \right)^2} + {y^2} + 4\left( {\frac{{2y}}{3}} \right) + 6y – 39 = 0$

$ \Rightarrow y = 3,\; – 9 $

$\Rightarrow x = 2,\; – 6$

Hence another point will be $( – 6,\, – 9)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.