The square of the length of the tangent from $(3, -4)$ on the circle ${x^2} + {y^2} - 4x - 6y + 3 = 0$ is

  • A

    $20$

  • B

    $30$

  • C

    $40$

  • D

    $50$

Similar Questions

The equations of the tangents to the circle ${x^2} + {y^2} = 36$ which are inclined at an angle of ${45^o}$ to the $x$-axis are

Two circles each of radius $5\, units$ touch each other at the point $(1,2)$. If the equation of their common tangent is $4 \mathrm{x}+3 \mathrm{y}=10$, and $\mathrm{C}_{1}(\alpha, \beta)$ and $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to .... .

  • [JEE MAIN 2021]

Let the tangents at the points $A (4,-11)$ and $B (8,-5)$ on the circle $x^2+y^2-3 x+10 y-15=0$, intersect at the point $C$. Then the radius of the circle, whose centre is $C$ and the line joining $A$ and $B$ is its tangent, is equal to

  • [JEE MAIN 2023]

Equation of the tangent to the circle, at the point $(1 , -1)$ whose centre is the point of intersection of the straight lines $x - y = 1$ and $2x + y= 3$ is

  • [JEE MAIN 2016]

If $\theta $ is the angle subtended at $P({x_1},{y_1})$ by the circle $S \equiv {x^2} + {y^2} + 2gx + 2fy + c = 0$, then