The pointer of a dead-beat galvanometer gives a steady deflection because
Eddy currents are produced in the conducting frame over which the coil is wound
Its magnet is very strong
Its pointer is very light
Its frame is made of abonite
What is the mutual inductance of a two-loop system as shown with centre separation l
A circular loop of radius $0.3\, cm$ lies parallel to a much bigger circular loop of radius $20 \,cm$. The centre of the small loop on the axis of the bigger loop. The distance between their centres is $15\, cm$. If a current of $20\, A$ flows through the smaller loop, then the flux linked with bigger loop is
Two circular coils can be arranged in any of the three situations shown in the figure. Their mutual inductance will be
Two coils $A$ and $B$ having turns $300$ and $600$ respectively are placed near each other, on passing a current of $3.0$ ampere in $A$, the flux linked with A is $1.2 \times {10^{ - 4}}\,weber$ and with $B$ it is $9.0 \times {10^{ - 5}}\,weber$. The mutual inductance of the system is
Two coils have a mutual inductance $0.005\,H$ . The current changes in the first coil The current changes in the first coil according to the equation $I = I_0 sin\,\omega t$ , where $I_0 = 10\,A$ and $\omega = 100\pi \,rad/s$ . The maximum value of $emf$ in the second coil will be