- Home
- Standard 9
- Mathematics
2. Polynomials
hard
બહુપદી $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ ને $x+ 1$ વડે ભાગતાં મળતી શેષ $19$ હોય, તો $a$ ની કિંમત શોધો. $p(x)$ ને $(x + 2)$ વડે ભાગતાં મળતી શેષ પણ શોધો.
A
$60$
B
$61$
C
$62$
D
$63$
Solution
We know that if $p(x)$ is divided by $x+a,$ then the remainder $=p(-a)$
Now, $p(x)=x^{4}-2 x^{3}+3 x^{3}-a x+3 a-7$ is divided by $x+1,$ then the remainder $=p(-1)$
Now, $p(-1)=(-1)^{4}-2(-1)^{3}+3(-1)^{2}-a(-1)+3 a-7$
$=1-2(-1)+3(1)+a+3 a-7$
$=1+2+3+4 a-7$
$=-1+4 a$
Also, remainder $=19$
$\therefore \quad-1+4 a=19$
$\Rightarrow \quad 4 a=20 ; a=20 \div 4=5$
Again, when $p ( x )$ is divided by $x+2,$ then
Remainder $=p(-2)=(-2)^{4}-2(-2)^{3}+3(-2)^{2}-a(-2)+3 a-7$
$=16+16+12+2 a+3 a-7$
$=37+5 a$
$=37+5(5)=37+25=62$
Standard 9
Mathematics