The potential energy $u$ of a particle varies with distance $x$ from a fixed origin as $u=\frac{A \sqrt{x}}{x+B}$, where $A$ and $B$ are constants. The dimensions of $A$ and $B$ are respectively
$\left[ ML ^{5 / 2} T ^{-2}\right],[ L ]$
$\left[ MLT ^{-2}\right],\left[L^2\right]$
$[L],\left[ ML ^{3 / 2} T ^{-2}\right]$
$\left[L^2\right],\left[ MLT ^{-2}\right]$
The speed of a wave produced in water is given by $v=\lambda^a g^b \rho^c$. Where $\lambda$, g and $\rho$ are wavelength of wave, acceleration due to gravity and density of water respectively. The values of $a , b$ and $c$ respectively, are
A quantity $x$ is given by $\left( IF v^{2} / WL ^{4}\right)$ in terms of moment of inertia $I,$ force $F$, velocity $v$, work $W$ and Length $L$. The dimensional formula for $x$ is same as that of
The dimensions of physical quantity $X$ in the equation Force $ = \frac{X}{{{\rm{Density}}}}$ is given by
Let us consider a system of units in which mass and angular momentum are dimensionless. If length has dimension of $L$, which of the following statement ($s$) is/are correct ?
$(1)$ The dimension of force is $L ^{-3}$
$(2)$ The dimension of energy is $L ^{-2}$
$(3)$ The dimension of power is $L ^{-5}$
$(4)$ The dimension of linear momentum is $L ^{-1}$