Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The product of the lengths of perpendiculars drawn from any point on the hyperbola $x^2 -2y^2 -2=0$  to its asymptotes is 

A

$\frac{1}{2}$

B

$\frac{2}{3}$

C

$\frac{3}{2}$

D

$20$

Solution

Given          $\frac{x^{2}}{2}-\frac{y^{2}}{1}=1$

Here,         $a^{2}=2, \quad b^{2}=1$

Equation of asymptotes to the given hyperbola is

$\frac{x}{{\sqrt 2 }} – \frac{y}{1} = 0$ and ${\rm{ }}\frac{x}{{\sqrt 2 }} + \frac{y}{1} = 0$

Let $P(\sqrt{2} \sec \theta, \tan \theta)$ be any point, then product of length of perpendicular

${=\frac{\left[\frac{\sqrt{2} \sec \theta}{\sqrt{2}}-\frac{\tan \theta}{1}\right]\left[\frac{\sqrt{2} \sec \theta}{\sqrt{2}}+\frac{\tan \theta}{1}\right]}{\sqrt{\frac{1}{2}+\frac{1}{1}} \sqrt{\frac{1}{2}+\frac{1}{1}}}} $

${=\frac{\sec ^{2} \theta-\tan ^{2} \theta}{\frac{3}{2}}=\frac{2}{3}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.