Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49 y^{2}-16 x^{2}=784$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $49 y^{2}-16 x^{2}=784$

It can be written as  $49 y^{2}-16 x^{2}=784$

Or,  $\frac{y^{2}}{16}-\frac{x^{2}}{49}=1$

Or,  $\frac{y^{2}}{4^{2}}-\frac{x^{2}}{7^{2}}=1$          ......... $(1)$

On comparing equation $(1)$ with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1,$ we obtain $a=4$ and $b=7$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore c^{2}=16+49=65$

$\Rightarrow c=\sqrt{65}$

Therefore, The coordinates of the foci are $(0,\,\pm \sqrt{65})$

The coordinates of the vertices are $(0,\,±4)$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{65}}{4}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 49}{4}=\frac{49}{2}$

Similar Questions

Product of length of the perpendiculars drawn from foci on any tangent to hyperbola ${x^2} - \frac{{{y^2}}}{4}$ = $1$ is

Locus of the middle points of the parallel chords with gradient $m$ of the rectangular hyperbola $xy = c^2 $ is

Let the eccentricity of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ be $\frac{5}{4}$. If the equation of the normal at the point $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ on the hyperbola is $8 \sqrt{5} x +\beta y =\lambda$, then $\lambda-\beta$ is equal to

  • [JEE MAIN 2022]

If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ coincide with the foci of the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}},$ then $b^2$ is equal to

  • [AIEEE 2012]

Let $H : \frac{ x ^{2}}{ a ^{2}}-\frac{y^{2}}{ b ^{2}}=1$, a $>0, b >0$, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is $4(2 \sqrt{2}+\sqrt{14})$. If the eccentricity $H$ is $\frac{\sqrt{11}}{2}$, then value of $a^{2}+b^{2}$ is equal to

  • [JEE MAIN 2022]