The proposition $ \sim \left( {p\,\vee \sim q} \right) \vee \sim \left( {p\, \vee q} \right)$ is logically equivalent to
$p$
$q$
$\sim p$
$\sim q$
Consider the two statements :
$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology
$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.
Then :
Which Venn diagram represent the truth of the statement“Some teenagers are not dreamers”
The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$