- Home
- Standard 12
- Physics
13.Nuclei
hard
The radioactivity of a sample is $R_1$ at time $T_1$ and $R_2$ at time $T_2.$ If the half life of the specimen is $T.$ Number of atoms that have disintegrated in time $(T_2 - T_1)$ is proportional to
A
$(R_1T_1 - R_2T_2)$
B
$(R_1 - R_2) T$
C
$(R_1 - R_2)/T$
D
$(R_1 - R_2) (T_1 - T_2)$
Solution
$R_{1}=N_{1} \lambda, R_{2}=N_{2} \lambda$
Also,
$T=\log _{e} \cdot \frac{2}{\lambda}$ or $\lambda=\log _{e} \cdot \frac{2}{T}$
$\therefore R_{1}-R_{2}=\left(N_{1}-N_{2}\right) \lambda$
$=\left(N_{1}-N_{2}\right) \log _{e} \cdot \frac{2}{T}$
$\therefore\left(N_{1}-N_{0}\right)=\frac{\left(R_{1}-R_{2}\right) T}{\log _{e} 2}$
i.e., $\left(N_{1}-N_{2}\right) \propto\left(R_{1}-R_{2}\right) T$
Standard 12
Physics
Similar Questions
hard