Gujarati
Hindi
13.Nuclei
hard

The radioactivity of a sample is $R_1$ at time $T_1$ and $R_2$ at time $T_2.$ If the half life of the specimen is $T.$ Number of atoms that have disintegrated in time $(T_2 - T_1)$ is proportional to

A

$(R_1T_1 - R_2T_2)$

B

$(R_1 - R_2) T$

C

$(R_1 - R_2)/T$

D

$(R_1 - R_2) (T_1 - T_2)$

Solution

$R_{1}=N_{1} \lambda, R_{2}=N_{2} \lambda$

Also,

$T=\log _{e} \cdot \frac{2}{\lambda}$ or $\lambda=\log _{e} \cdot \frac{2}{T}$

$\therefore R_{1}-R_{2}=\left(N_{1}-N_{2}\right) \lambda$

$=\left(N_{1}-N_{2}\right) \log _{e} \cdot \frac{2}{T}$

$\therefore\left(N_{1}-N_{0}\right)=\frac{\left(R_{1}-R_{2}\right) T}{\log _{e} 2}$

i.e., $\left(N_{1}-N_{2}\right) \propto\left(R_{1}-R_{2}\right) T$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.