The rate law for the reaction$RCl + NaOH(aq) \to ROH + NaCl$ is given by Rate $ = {K_1}[RCl]$. The rate of the reaction will be
Doubled on doubling the concentration of sodium hydroxide
Halved on reducing the concentration of alkyl halide to one half
Decreased on increasing the temperature of the reaction
Unaffected by increasing the temperature of the reaction
The reaction, $X + 2Y + Z \to N$ occurs by the following mechanism
$(i)$ $X + Y \rightleftharpoons M$ very rapid equilibrium
$(ii)$ $M + Z \to P$ slow
$(iii)$ $O + Y \to N$ very fast
What is the rate law for this reaction
The rate constant for the reaction $2N_2O_5 \to 4NO_2 + O_2$ is $3.0\times10^{-5}\, sec^{-1}$. If rate is $2.40\times10^{-5}\, M\, sec^{-1}$, then the concentration of $N_2O_5$ (in $M$) is ?
For the reaction:
$2 A + B \rightarrow A _{2} B $
the rate $=k[ A ][ B ]^{2}$ with $k =2.0 \times 10^{-6} \,mol ^{-2}\, L ^{2} \,s ^{-1}$. Calculate the initial rate of the reaction when $[ A ]=0.1 \,mol \,L ^{-1},[ B ]=0.2\, mol \,L ^{-1}$. Calculate the rate of reaction after $[A] $ is reduced to $0.06 \,mol\, L ^{-1}$
The rate law of the reaction $A + 2B \to $Product is given by $\frac{{d[dB]}}{{dt}} = k[{B^2}]$. If $ A$ is taken in excess, the order of the reaction will be
The rate of dissappearance of $MnO_4^-$ in the following reaction is $4.56 \times 10^{-3}\, M/s$
$2MnO_4^-+ 10I^-+ 16H^+ \to 2Mn^{2+} + 5I_2 + 8 H_2O$
The rate of apperance of $I_2$ is