The rate law for the reaction$RCl + NaOH(aq) \to ROH + NaCl$ is given by Rate $ = {K_1}[RCl]$. The rate of the reaction will be

  • [IIT 1988]
  • A

    Doubled on doubling the concentration of sodium hydroxide

  • B

    Halved on reducing the concentration of alkyl halide to one half

  • C

    Decreased on increasing the temperature of the reaction

  • D

    Unaffected by increasing the temperature of the reaction

Similar Questions

The reaction, $X + 2Y + Z \to  N$ occurs by the following mechanism

$(i)$ $X + Y  \rightleftharpoons  M$             very rapid equilibrium

$(ii)$ $M + Z \to  P$                        slow

$(iii)$ $O + Y \to  N$                       very fast

What is the rate law for this reaction

The rate constant for the reaction $2N_2O_5 \to  4NO_2 + O_2$ is $3.0\times10^{-5}\, sec^{-1}$. If rate is $2.40\times10^{-5}\, M\, sec^{-1}$, then the concentration of $N_2O_5$ (in $M$) is ?

For the reaction:

$2 A + B \rightarrow A _{2} B $

the rate $=k[ A ][ B ]^{2}$ with $k =2.0 \times 10^{-6} \,mol ^{-2}\, L ^{2} \,s ^{-1}$. Calculate the initial rate of the reaction when $[ A ]=0.1 \,mol \,L ^{-1},[ B ]=0.2\, mol \,L ^{-1}$. Calculate the rate of reaction after $[A] $ is reduced to $0.06 \,mol\, L ^{-1}$

The rate law of the reaction $A + 2B \to $Product is given by $\frac{{d[dB]}}{{dt}} = k[{B^2}]$. If $ A$  is taken in excess, the order of the reaction will be

The rate of dissappearance of $MnO_4^-$ in the following reaction is $4.56 \times 10^{-3}\, M/s$

$2MnO_4^-+ 10I^-+ 16H^+ \to 2Mn^{2+} + 5I_2 + 8 H_2O$

The rate of apperance of $I_2$ is