The rate law of the reaction $A + 2B \to $Product is given by $\frac{{d[dB]}}{{dt}} = k[{B^2}]$. If $ A$ is taken in excess, the order of the reaction will be
$1$
$2$
$3$
$0$
Why can’t molecularity of any reaction be equal to zero ?
For a reaction scheme. $A\xrightarrow{{{k_1}}}B\xrightarrow{{{k_2}}}C$ if the rate of formation of $B$ is set to be zero then the concentration of $B$ is given by
The half life for the decomposition of gaseous compound $A$ is $240\,s$ when the gaseous pressure was $500\,Torr$ initially. When the pressure was $250\,Torr$, the half life was found to be $4.0\,min$. The order of the reaction is....... (Nearest integer)
If the rate expression for a chemical reaction is given by Rate $ = k{[A]^m}{[B]^n}$
The rate constant for the reaction, $2{N_2}{O_5} \to 4N{O_2}$ $ + {O_2}$ is $3 \times {10^{ - 5}}{\sec ^{ - 1}}$. If the rate is $2.40 \times {10^{ - 5}}\,mol\,\,litr{e^{{\rm{ - 1}}}}{\sec ^{ - 1}}$. Then the concentration of ${N_2}{O_5}$ (in mol litre $^{-1}$) is