During Kinetic study of reaction $2 A+B \rightarrow C+D$, the following results were obtained :
$A[M]$ | $B[M]$ |
initial rate of formation of $D$ |
|
$i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
Based on above data, overall order of the reaction is $\qquad$
The rate constant for the reaction, $2N_2O_5 \to 4NO_2 + O_2$ is $3.0\times 10^{- 4}\,s^{-1}$ . If start made with $1.0\,mol\,L^{-1}$ of $N_2O_5$, calculate the rate of formation of $NO_2$ at the moment of the reaction when concentration of $O_2$ is $0.1\, mol\, L^{-1}$.
Which one of the following statement for order of reaction is not correct ?
Write unit of rate constant of following reaction :
$1.$ fourth order
$2.$ third order
For the reaction
$2 \mathrm{H}_{2}(\mathrm{g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
the observed rate expression is, rate $=\mathrm{k}_{\mathrm{f}}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right] .$ The rate expression of the reverse reaction is