The ratio of diameters of two wires of same material is $n : 1$. The length of wires are $4\, m$ each. On applying the same load, the increase in length of thin wire will be

  • A

    ${n^2}$ times

  • B

    $n$ times

  • C

    $2n$ times

  • D

    None of the above

Similar Questions

A wire of cross sectional area $A$, modulus of elasticity $2 \times 10^{11} \mathrm{Nm}^{-2}$ and length $2 \mathrm{~m}$ is stretched between two vertical rigid supports. When a mass of $2 \mathrm{~kg}$ is suspended at the middle it sags lower from its original position making angle $\theta=\frac{1}{100}$ radian on the points of support. The value of $A$ is. . . . . .  $\times 10^{-4} \mathrm{~m}^2$ (consider $\mathrm{x}<\mathrm{L}$ ).

(given: $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )

  • [JEE MAIN 2024]

check the statment are True or False $:$

$(a)$ Young’s modulus of rigid body is .....

$(b)$ A wire increases by $10^{-6}$​ times its original length when a stress of
$10^8\,Nm^{-2}$ is applied to it, calculate its Young’s modulus.

$(c)$ The value of Poisson’s ratio for steel is ......

A wooden wheel of radius $R$ is made of two semicircular part (see figure). The two parts are held together by a ring made of a metal strip of cross section area $S$ and length $L$. $L$ is slighly less than $2\pi R$. To fit the ring on the wheel, it is heated so that its temperature rises by $\Delta T$ and it just steps over the wheel.As it cools down to surronding temperature, it presses the semicircular parts together. If the coefficint of linear expansion of the metal is $\alpha$, and its young's modulus is $Y$, the force that one part of wheel applies on the other part is 

  • [AIEEE 2012]

If Young's modulus for a material is zero, then the state of material should be

The ratio of diameters of two wires of same material is $n : 1$. The length of wires are $4\, m$ each. On applying the same load, the increase in length of thin wire will be