The ratio of kinetic energies of two spheres rolling with equal centre of mass velocities is $2 : 1$. If their radii are in the ratio $2 : 1$; then the ratio of their masses will be
$2:1$
$1:8$
$1:7$
$2\sqrt 2 :1$
A thin hollow cylinder open at both ends:
$(i)$ Slides without rotating
$(ii)$ Rolls without slipping, with the same speed
A uniform ring of radius $R$ is moving on a horizontal surface with speed $v$, then climbs up a ramp of inclination $30^{\circ}$ to a height $h$. There is no slipping in the entire motion. Then, $h$ is
A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $(K_t)$ as well as rotational kinetic energy $(K_r)$ simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
A cord is wound round the circumference of wheel of radius $r$. The axis of the wheel is horizontal and the moment of inertia about it is $I. \,A$ weight $mg$ is attached to the cord at the end. The weight falls from rest. After falling through a distance $ 'h '$, the square of angular velocity of wheel will be ..... .
Two bodies, a ring and a solid cylinder of same material are rolling down without slipping an inclined plane. The radii of the bodies are same. The ratio of velocity of the centre of mass at the bottom of the inclined plane of the ring to that of the cylinder is $\frac{\sqrt{x}}{2}$. Then, the value of $x$ is .... .