7.Gravitation
medium

The ratio of kinetic energy of a planet at perigee and apogee during its motion around the sun in elliptical orbit of eccentricity $e$ is ..........

A

$1: e$

B

$\frac{1+e}{1-e}$

C

$\left(\frac{1+e}{1-e}\right)^2$

D

$\left(\frac{1-e}{1+e}\right)^2$

Solution

(c)

$K.E$ of a planet $=\frac{1}{2} m v^2$

$K.E$ at perigee $=\frac{1}{2} m v_P^2$

$K.E$ at apogee $=\frac{1}{2} m v_A^2$

Using conservation of angular momentum at $P$ and $A$

$\Rightarrow m v_P r_P=m v_A r_A$

$\Rightarrow \frac{v_P}{v_A}=\frac{r_A}{r_P}=\frac{a(1+e)}{a(1-e)}$

$\Rightarrow \frac{ K \cdot E _P}{ K \cdot E _A}=\frac{v_P^2}{v_A^2}=\left(\frac{1+e}{1-e}\right)^2$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.