- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
medium
The ratio of rotational and translatory kinetic energies of a sphere is
A
$\frac{2}{9}$
B
$\frac{2}{7}$
C
$\frac{2}{5}$
D
$\frac{7}{2}$
Solution
Rotational $K E=\frac{1}{2} I \omega^{2}$
but $\omega=\frac{v}{R}$
$\therefore$ Rotational $K E=\frac{1}{2} I \frac{v^{2}}{R^{2}}$
but the moment of inertia of a sphere is $I=\frac{2}{5} m R^{2}$
$\therefore$ Rotational $K E=\frac{1}{2}\left(\frac{2}{5} m R^{2}\right) \frac{v^{2}}{R^{2}}$
$\mathrm{Or}$
Rotational $K E_{R}=\frac{1}{5} m v^{2}$
Translational $K E_{T}=\frac{1}{2} m v^{2}$
Ratio $\frac{K E_{R}}{K E_{T}}=\frac{\frac{1}{5} m v^{2}}{\frac{1}{2} m v^{2}}=\frac{2}{5}$
Standard 11
Physics
Similar Questions
hard