One twirls a circular ring (of mass $M$ and radius $R$ ) near the tip of one's finger as shown in Figure $1$ . In the process the finger never loses contact with the inner rim of the ring. The finger traces out the surface of a cone, shown by the dotted line. The radius of the path traced out by the point where the ring and the finger is in contact is $\mathrm{r}$. The finger rotates with an angular velocity $\omega_0$. The rotating ring rolls without slipping on the outside of a smaller circle described by the point where the ring and the finger is in contact (Figure $2$). The coefficient of friction between the ring and the finger is $\mu$ and the acceleration due to gravity is $g$.
(IMAGE)
($1$) The total kinetic energy of the ring is
$[A]$ $\mathrm{M} \omega_0^2 \mathrm{R}^2$ $[B]$ $\frac{1}{2} \mathrm{M} \omega_0^2(\mathrm{R}-\mathrm{r})^2$ $[C]$ $\mathrm{M \omega}_0^2(\mathrm{R}-\mathrm{r})^2$ $[D]$ $\frac{3}{2} \mathrm{M} \omega_0^2(\mathrm{R}-\mathrm{r})^2$
($2$) The minimum value of $\omega_0$ below which the ring will drop down is
$[A]$ $\sqrt{\frac{g}{\mu(R-r)}}$ $[B]$ $\sqrt{\frac{2 g}{\mu(R-r)}}$ $[C]$ $\sqrt{\frac{3 g}{2 \mu(R-r)}}$ $[D]$ $\sqrt{\frac{g}{2 \mu(R-r)}}$
Givin the answer quetion ($1$) and ($2$)
$C,A$
$C,D$
$A,D$
$A,B$
A body rolls down an inclined plane without slipping. The kinetic energy of rotation is $50 \,\%$ of its translational kinetic energy. The body is :
$A$ sphere of mass $M$ and radius $R$ is attached by a light rod of length $l$ to $a$ point $P$. The sphere rolls without slipping on a circular track as shown. It is released from the horizontal position. the angular momentum of the system about $P$ when the rod becomes vertical is :
A thin uniform rod oflength $l$ and mass $m$ is swinging freely about a horizontal axis passing through its end . Its maximum angular speed is $\omega$. Its centre of mass rises to a maximum height of:
A disc of radius $2\; \mathrm{m}$ and mass $100\; \mathrm{kg}$ rolls on a horizontal floor. Its centre of mass has speed of $20\; \mathrm{cm} / \mathrm{s} .$ How much work is needed to stop it?
Write the formula for power and angular momentum in rotational motion.