4-1.Complex numbers
easy

$\frac{1}{{1 - \cos \theta + i\,\sin \theta }}$ નો વાસ્તવિક ભાગ મેળવો.

A

$1/4$

B

$1/2$

C

$tan {\theta\over2}$

D

$1/{1-cos\theta }$

Solution

(b) $\frac{1}{{1 – \cos \,\,\theta + i\sin \,\,\theta }}$$ = \frac{1}{{(1 – \cos \,\theta ) + i\sin \,\theta }} \times \frac{{(1 – \cos \,\theta ) – i\sin \,\theta }}{{(1 – \cos \,\theta ) – i\sin \,\theta }}$
$ = \frac{{(1 – \cos \theta ) – i\sin \theta }}{{{{(1 – \cos \theta )}^2} + {{\sin }^2}\theta }}$ $ = \frac{{(1 – \cos \theta ) – i\sin \theta }}{{2(1 – \cos \theta )}}$
$ = \frac{{(1 – \cos \theta )}}{{2(1 – \cos \theta )}} – i\,\frac{{\sin \theta }}{{2(1 – \cos \theta )}}.$
Therefore its real part = $\frac{{1 – \cos \theta }}{{2\,(1 – \cos \theta )}} = \frac{1}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.