- Home
- Standard 11
- Mathematics
The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:
$(12, 32)$
$(18, 42)$
$(12, 24)$
$(18, 48)$
Solution
The equation of the circles are
${x^2} + {y^2} – 10x – 10y + \lambda = 0\,\,\,\,\,\,\,……\left( 1 \right)$
and ${x^2} + {y^2} – 4x – 4y + 6 = 0\,\,\,\,\,\,\,……\left( 2 \right)$
${C_1} = \,$ center of $\left( 1 \right) = \left( {5,5} \right)$
${C_2} = \,$ center of $\,\left( 2 \right) = \left( {2,2} \right)$
$ = {C_1}{C_2} = \sqrt {9 + 9} = \sqrt {18} $
${r_1} = \sqrt {50 – \lambda } ,{r_2} = \sqrt 2 $
For exactly two common tangents we have
${r_1} – {r_2} < {C_1}{C_2} < {r_1} + {r_2}$
$ \Rightarrow \sqrt {50 – \lambda } – \sqrt 2 < 3\sqrt 2 < \sqrt {50 – \lambda } + \sqrt 2 $
$ \Rightarrow \sqrt {50 – \lambda } – \sqrt 2 < 3\sqrt 2 $ or $\,3\sqrt 2 < \sqrt {50 – \lambda } + \sqrt 2 $
$ \Rightarrow \sqrt {50 – \lambda } < 4\sqrt 2 $ or $2\sqrt 2 < \sqrt {50 – \lambda } $
$50 – \lambda < 32$ or $8 > 50 – \lambda $
$ \Rightarrow \lambda < 18$ or $\lambda < 42$
Required interval is $(18,42)$