10-1.Circle and System of Circles
hard

The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:

A

$(12, 32)$

B

$(18, 42)$

C

$(12, 24)$

D

$(18, 48)$

(JEE MAIN-2014)

Solution

The equation of the circles are

${x^2} + {y^2} – 10x – 10y + \lambda  = 0\,\,\,\,\,\,\,……\left( 1 \right)$

and ${x^2} + {y^2} – 4x – 4y + 6 = 0\,\,\,\,\,\,\,……\left( 2 \right)$

${C_1} = \,$ center of $\left( 1 \right) = \left( {5,5} \right)$

${C_2} = \,$ center of $\,\left( 2 \right) = \left( {2,2} \right)$

$ = {C_1}{C_2} = \sqrt {9 + 9}  = \sqrt {18} $

${r_1} = \sqrt {50 – \lambda } ,{r_2} = \sqrt 2 $

For exactly two common tangents we have

${r_1} – {r_2} < {C_1}{C_2} < {r_1} + {r_2}$

$ \Rightarrow \sqrt {50 – \lambda }  – \sqrt 2  < 3\sqrt 2  < \sqrt {50 – \lambda }  + \sqrt 2 $

$ \Rightarrow \sqrt {50 – \lambda }  – \sqrt 2  < 3\sqrt 2 $ or $\,3\sqrt 2  < \sqrt {50 – \lambda }  + \sqrt 2 $

$ \Rightarrow \sqrt {50 – \lambda }  < 4\sqrt 2 $ or $2\sqrt 2  < \sqrt {50 – \lambda } $

$50 – \lambda  < 32$ or $8 > 50 – \lambda $

$ \Rightarrow \lambda  < 18$ or $\lambda  < 42$

Required interval is $(18,42)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.