The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:
$(12, 32)$
$(18, 42)$
$(12, 24)$
$(18, 48)$
Let the equation $x^{2}+y^{2}+p x+(1-p) y+5=0$ represent circles of varying radius $\mathrm{r} \in(0,5]$. Then the number of elements in the set $S=\left\{q: q=p^{2}\right.$ and $\mathrm{q}$ is an integer $\}$ is ..... .
The locus of centre of the circle which cuts the circles${x^2} + {y^2} + 2{g_1}x + 2{f_1}y + {c_1} = 0$ and ${x^2} + {y^2} + 2{g_2}x + 2{f_2}y + {c_2} = 0$ orthogonally is
If two circles ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ and ${x^2} + {y^2} - 8x + 2y + 8 = 0$ intersect in two distinct points, then
The common tangent to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 + 6x + 8y - 24 = 0$ also passes through the point
The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is