$\lambda $ ની એવી શકય કિમતોનો ગણ મેળવો કે જેથી વર્તુળ $x^2 + y^2 - 4x - 4y+ 6\, = 0$ અને $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ ને બરાબર બે સામાન્ય સ્પર્શકો હોય 

  • [JEE MAIN 2014]
  • A

    $(12, 32)$

  • B

    $(18, 42)$

  • C

    $(12, 24)$

  • D

    $(18, 48)$

Similar Questions

વર્તૂળો ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ અને ${x^2} + {y^2} - 8x + 2y + 8 = 0$ બે ભિન્ન બિંદુમાં છેદે તો,

  • [IIT 1989]

બિંદુ $C_1$ અને $C_2$  એ અનુક્રમે વર્તુળ $x^2 + y^2 -2x -2y -2 = 0$ અને $x^2 + y^2 - 6x-6y + 14 = 0$ ના કેન્દ્રો છે જો બિંદુ $P$ અને $Q$ એ વર્તુળોના છેદબિંદુઓ હોય તો ચતુષ્કોણ $PC_1QC_2$ ક્ષેત્રફળ (ચો. એકમમાં ) .................. થાય

  • [JEE MAIN 2019]

વર્તૂળ $x^2 + y^2 = 1 $ સાથે સંકળાયેલ અને અંદરથી સ્પર્શતા  $(4, 3)$ કેન્દ્રવાળા વર્તૂળનું સમીકરણ....

જો વર્તૂળ, બિંદુ $(a, b)$ માંથી પસાર થાય અને વર્તૂળ $x^{2} + y^{2} = 4$ ને લંબરૂપે છેદે, તો તેના કેન્દ્રનો બિંદુ પથ....

જો વર્તૂળો ${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$ અને ${x^2} + {y^2} + 2x + 2y - {p^2} = 0$ નાં છેદબિંદુઓ $P$ અને $Q$ હોય,તો $P,Q$ અને $ (1,1)$  માંથી પસાર થતા વર્તૂળ માટે:

  • [AIEEE 2009]