4-1.Complex numbers
normal

${(1 + i)^{2n}} = {(1 - i)^{2n}}$ के लिये न्यूनतम धनात्मक पूर्णांक $n$ का मान है

A

$1$

B

$2$

C

$3$

D

$4$

Solution

(b) हम जानते हैं कि ${(1 + i)^{2n}} = {(1 – i)^{2n}}$

$ \Rightarrow {\left( {\frac{{1 + i}}{{1 – i}}} \right)^{2n}} = 1$$ \Rightarrow {(i)^{2n}} = 1$$ \Rightarrow {(i)^{2n}} = {( – 1)^2}$
$ \Rightarrow {(i)^{2n}} = {({i^2})^2}$$ \Rightarrow {(i)^{2n}} = {(i)^4}$

$ \Rightarrow 2n = 4$$ \Rightarrow n = 2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.