- Home
- Standard 11
- Mathematics
Let $P$ be an arbitrary point on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ $a > b > 0$. Suppose $F_1$ and $F_2$ are the foci of the ellipse. The locus of the centroid of the $\Delta P F_1 F_2$ as $P$ moves on the ellipse is
a circle
a parabola
an ellipse
a hyperbola
Solution
(c)
We have, equation of ellipse
$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
Point $P(a \cos \theta, b \sin \theta)$ lie on ellipse
Foci of ellipse $\left(F_1\right)(a e, 0)$ and $F_2(-a e, 0)$
$\therefore$ Centroid of $\triangle P F_1 F_2=\left(\frac{a \cos \theta}{3}, \frac{b \sin \theta}{3}\right)$
$\therefore \quad h=\frac{a \cos \theta}{3}, K=\frac{b \sin \theta}{3}$
$\begin{array}{l}\Rightarrow\left(\frac{3 h}{a}\right)^2+\left(\frac{3 k}{b}\right)^2=\cos ^2 \theta+\sin ^2 \theta \\\Rightarrow \quad \frac{9 x^2}{a^2}+\frac{9 y^2}{b^2}=1\end{array}$
which represent the locus of ellipse.