The square root of $\sqrt {(50)} + \sqrt {(48)} $ is

  • A

    ${2^{1/4}}(3 + \sqrt 2 )$

  • B

    ${2^{1/4}}(\sqrt 3 + 2)$

  • C

    ${2^{1/4}}(2 + \sqrt 2 )$

  • D

    ${2^{1/4}}(\sqrt 3 + \sqrt 2 )$

Similar Questions

Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$

${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$

If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is

If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then

${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $