The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
${2^{1/4}}(3 + \sqrt 2 )$
${2^{1/4}}(\sqrt 3 + 2)$
${2^{1/4}}(2 + \sqrt 2 )$
${2^{1/4}}(\sqrt 3 + \sqrt 2 )$
The value of the fifth root of $10^{10^{10}}$ is
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is
${a^{m{{\log }_a}n}} = $