${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
$2 + \sqrt 2 + \sqrt 6 $
$1 + \sqrt 2 + \sqrt 3 $
$3 + \sqrt 2 + \sqrt 3 $
None of these
If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$
If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is