${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $

  • A

    $2 + \sqrt 2 + \sqrt 6 $

  • B

    $1 + \sqrt 2 + \sqrt 3 $

  • C

    $3 + \sqrt 2 + \sqrt 3 $

  • D

    None of these

Similar Questions

If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$

If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

Solution of the equation  ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution

The cube root of $9\sqrt 3 + 11\sqrt 2 $ is

The square root of $\sqrt {(50)} + \sqrt {(48)} $ is