${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $
$2 + \sqrt 2 + \sqrt 6 $
$1 + \sqrt 2 + \sqrt 3 $
$3 + \sqrt 2 + \sqrt 3 $
None of these
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
The value of ${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }}$ is
${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are