The statement $A \rightarrow( B \rightarrow A )$ is equivalent to
$A \rightarrow( A \wedge B )$
$A \rightarrow( A \rightarrow B )$
$A \rightarrow( A \leftrightarrow B )$
$A \rightarrow(A \vee B)$
The logical statement $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ is equivalent to
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
Negation is $“2 + 3 = 5$ and $8 < 10”$ is
If $\mathrm{p} \rightarrow(\mathrm{p} \wedge-\mathrm{q})$ is false, then the truth values of $p$ and $q$ are respectively
The logically equivalent preposition of $p \Leftrightarrow q$ is