- Home
- Standard 11
- Mathematics
4-1.Complex numbers
normal
The statement $(a + ib) < (c + id)$ is true for
A
${a^2} + {b^2} = 0$
B
${b^2} + {c^2} = 0$
C
${a^2} + {c^2} = 0$
D
${b^2} + {d^2} = 0$
Solution
(d) $a + ib < c + id,\,$ defined if and only if its imaginary parts must be equal to zero, i.e. $b = d = 0.$
So,${b^2} + {d^2} = 0$.
.
Standard 11
Mathematics