The sum of the coefficient of $x^{2 / 3}$ and $x^{-2 / 5}$ in the binomial expansion of $\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$ is :
$21 / 4$
$69 / 16$
$63 / 16$
$19 / 4$
If the second, third and fourth term in the expansion of ${(x + a)^n}$ are $240, 720$ and $1080$ respectively, then the value of $n$ is
The coefficient of ${x^4}$ in the expansion of ${(1 + x + {x^2} + {x^3})^n}$ is
Let $0 \leq \mathrm{r} \leq \mathrm{n}$. If ${ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{r}+1}:{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}:{ }^{\mathrm{n}-1} \mathrm{C}_{\mathrm{r}-1}=55: 35: 21$, then $2 n+5 r$ is equal to:
In the expansion of ${({5^{1/2}} + {7^{1/8}})^{1024}}$, the number of integral terms is
The coefficient of ${x^{ - 9}}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ is