3 and 4 .Determinants and Matrices
medium

समीकरण निकाय $kx + y + z =1, x + ky + z = k$ तथा $x + y + zk = k ^{2}$ का कोई हल नहीं है, यदि $k$ बराबर है

A

$0$

B

$1$

C

$-1$

D

$-2$

(JEE MAIN-2021)

Solution

$k x+y+z=1$

$x+k y+z=k$

$x+y+z k=k^{2}$

$\Delta=\left|\begin{array}{ccc} K & 1 & 1 \\ 1 & K & 1 \\ 1 & 1 & K \end{array}\right|= K \left( K ^{2}-1\right)-1( K -1)+1(1- K )$

$= K ^{3}- K – K +1+1- K$

$= K ^{3}-3 K +2$

$=( K -1)^{2}( K +2)$

For $K =1$

$\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$

But for $K =-2,$ at least one out of $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are not zero

Hence for no sol$^{n}$, $K =-2$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.