ઉગમબિંદુ પર રહેલા વિસ્તરતું કદ $2 \times 10^{-9} \,{m}^{3}$ માં રહેલો વિદ્યુતભાર ...... $nC$ હશે, જો તેના વિદ્યુતક્ષેત્રની વિદ્યુતફ્લક્સ ઘનતા $D=e^{-x} \sin y \hat{i}-e^{-x} \cos y \hat{j}+2 z \hat{k}\, C / m^{2}$ હોય.

  • [JEE MAIN 2021]
  • A

    $4$

  • B

    $6$

  • C

    $8$

  • D

    $10$

Similar Questions

આકૃતિમાં દર્શાવ્યા પ્રમાણે બોક્સમાથી $\overrightarrow{\mathrm{E}}=4 \mathrm{x} \hat{\mathrm{i}}-\left(\mathrm{y}^{2}+1\right) \hat{\mathrm{j}}\; \mathrm{N} / \mathrm{C}$ જેટલું વિદ્યુતક્ષેત્ર પસાર થાય છે $A B C D$ અને $BCGF$ સપાટીમાંથી પસાર થતું ફ્લક્સ $\phi_{I}$ અને $\phi_{\mathrm{II}}$ હોય તો તેમનો તફાવત $\phi_{\mathrm{I}}-\phi_{\mathrm{II}}$ ($\mathrm{Nm}^{2} / \mathrm{C}$ માં) કેટલો મળે?

  • [JEE MAIN 2020]

જો બંધ પૃષ્ઠમાં દાખલ થતું અને બહાર આવતું ફલક્સ અનુક્રમે $\phi_1$ અને $\phi_2$ છે. પૃષ્ઠની અંદરની બાજુએ વિદ્યુતભાર ........ હશે.

આપેલ વિસ્તારમાં વિદ્યુતક્ષેત્ર $\overrightarrow{ E }=\left(\frac{3}{5} E _{0} \hat{i}+\frac{4}{5} E _{0} \hat{j}\right) \frac{ N }{ C }$ વડે આપવામાં આવે છે. $(y-z$ સમતલને સમાંતર) $0.2 \,m^ 2$ ક્ષેત્રફળ ધરાવતી અને $(x-y$ સમતલને સમાંતર) $0.3 \,m^2$ ક્ષેત્રફળ ધરાવતી લંબચોરસ સપાટીમાંથી બતાવેલ ક્ષેત્ર પસાર થતાં મળતા ફ્લક્સનો ગુણોત્તર $a:b$ છે, જ્યાં $a=...........$ છે.

[ અત્રે $\hat{i}, \hat{j}$ અને $\hat{k}$ એ અનુક્રમે $x, y$ અને $z-$ અક્ષોની દિશામાં એકમ સદિશ છે.]

  • [JEE MAIN 2021]

ગાઉસનો નિયમ ${ \in _0}\,\oint\limits_{} {\vec E,\,d\vec s\,\, = \,\,q} $ દ્વારા આપવામાં આવે છે જો ગાઉસિયન પૃષ્ઠ વડે ઘેરાતો ચોખ્ખો વિદ્યુતભાર શૂન્ય હોય તો .......

$h$ ઊંચાઈ અને $R$ બેજની ત્રિજ્યા ધરાવતા શંકુને $\vec E$ વિદ્યુતક્ષેત્રમાં એવી રીતે મૂકવામાં આવે છે કે જેથી વિદ્યુતક્ષેત્ર બેજને સમાંતર રહે.તો શંકુમાં દાખલ થતું વિદ્યુત ફ્લક્સ કેટલું હશે?

  • [JEE MAIN 2014]