मूलबिन्दु पर अवस्थित $2 \times 10^{-9}\, m ^{3}$ के किसी वार्धिक आयतन में परिबद्ध कुल आवेश $......\,nC$ होगा, यदि इसके क्षेत्र का विधुत फ्लक्स घनत्व $D = e ^{- x } \sin y \hat{ i }- e ^{- x } \cos y \hat{ j }+2 z \hat{ k } C / m ^{2}$ पाया जाता है।
$4$
$6$
$8$
$10$
$2 \mathrm{~L} \times 2 \mathrm{~L} \times \mathrm{L}$ विमा वाले एक घनाभ के पृष्ठ ' $\mathrm{S}$ ' जिसका क्षेत्रफल $4 \mathrm{~L}^2$ हैं, के केन्द्र पर $q$ आवेश रखा है। ' $\mathrm{S}$ ' के विपरीत पृष्ठ से गुजरने वाला फ्लक्स है:
यदि बन्द पृष्ठ के लिए $\oint_s \vec{E} \cdot \overrightarrow{d S}=0$ है, तब :
एक धात्विक घन को धनावेश $Q$ दिया गया है। इस व्यवस्था के लिए, निम्न में से कौनसा कथन सत्य है
आकर्षित स्थैतिक विधुत क्षेत्र के अन्तर्गत एक इलेक्ट्रॉन अनन्त लम्बाई वाले बेलनाकार तार के चारों तरफ वृत्ताकार पथ पर परिक्रमण कर रहा है। तार पर एकसमान रेखीय आवेश घनत्व $2 \times 10^{-8} \mathrm{Cm}^{-1}$ है। इलेक्ट्रॉन का वेग जिससे ये परिक्रमण कर रहा है वह__________$\times 10^6 \mathrm{~ms}^{-1}$. (दिया है, इलेक्ट्रॉन का द्रव्यमान $=9 \times 10^{-31} \mathrm{~kg}$ )।
गॉस प्रमेय का उपयोग करके, विद्युत द्विध्रुव के कारण विद्युत क्षेत्र की तीव्रता ज्ञात करने के लिए गोलीय गॉसीय पृष्ठ लेना सुविधा जनक नहीं है क्योंकि