1. Electric Charges and Fields
hard

मूलबिन्दु पर अवस्थित $2 \times 10^{-9}\, m ^{3}$ के किसी वार्धिक आयतन में परिबद्ध कुल आवेश $......\,nC$ होगा, यदि इसके क्षेत्र का विधुत फ्लक्स घनत्व $D = e ^{- x } \sin y \hat{ i }- e ^{- x } \cos y \hat{ j }+2 z \hat{ k } C / m ^{2}$ पाया जाता है।

A

$4$

B

$6$

C

$8$

D

$10$

(JEE MAIN-2021)

Solution

Electric flux density

$(\vec{D})=\frac{\text { charge }}{\text { Area }} \times \hat{r}=\frac{Q}{4 \pi r^{2}} \hat{r}=\epsilon_{0}\left(\frac{Q}{4 \pi \epsilon_{0} r^{2}} \hat{r}\right)$

$\Rightarrow \vec{E}=\frac{\vec{D}}{\epsilon_{0}}=\frac{e^{-x} \sin y \hat{i}-e^{-x} \cos y \hat{j}+2 z \hat{k}}{\epsilon_{0}}$

Also by Gauss's law

$\frac{\rho}{\epsilon_{0}}=\left(\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}\right) \cdot \vec{E}=\left(\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k}\right) \cdot \frac{\vec{D}}{\epsilon_{0}}$

$\Rightarrow \rho=\frac{\partial}{\partial x}\left(e^{-x} \sin y\right)+\frac{\partial}{\partial y}\left(-e^{-x} \cos y\right)+\frac{\partial}{\partial z}(2 z)$

$\rho=-e^{-x} \sin y+e^{-x} \sin y+2$

At origin $\rho=-e^{-0} \sin 0+e^{-0} \sin 0+2$

$\rho=2 {C} / {m}^{3}$

Charge $=\rho \times$ volume $=2 \times 2 \times 10^{-9}=4 \times 10^{-9}=4 {nC}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.