Two waves of sound having intensities $I$ and $4I$ interfere to produce interference pattern. The phase difference between the waves is $\pi /2$ at point $A$ and $\pi$ at point $B$. Then the difference between the resultant intensities at $A$ and $B$ is

  • A

    $2I$

  • B

    $4I$

  • C

    $5I$

  • D

    $7I$

Similar Questions

A man is watching two trains, one leaving and the other coming with equal speed of $4\,m/s$ . If they sound their whistles each of frequency $240\, Hz$ , the number of beats per sec heard by man will be equal to: (velocity of sound in air $= 320\, m/s$ )

The equation of a stationary wave is

$y = 0.8\,\cos \,\,\left( {\frac{{\pi x}}{{20}}} \right)\,\sin \,200\,\pi t$

where $x$ is in $cm$ and $t$ is in $sec$ . The separtion between consecutive nodes will be .... $cm$

When two waves of almost equal frequencies $v_1$ and $v_2$ reach at a point simultaneously, the time interval between successive maxima is

A massless rod is suspended by two identical strings $AB$ and $CD$ of equal length. A block of mass $m$ is suspended from point $ O $ such that $BO$ is equal to $’x’$. Further, it is observed that the frequency of $1^{st}$ harmonic (fundamental frequency) in $AB$ is equal to $2^{nd}$ harmonic frequency in $CD$. Then, length of $BO$ is

A racing car moving towards a cliff sounds its horn. The driver observes that the sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If $v$ is the velocity of sound, the velocity of the car will be