The value of $249^{2}-248^{2}$ is
$1^{2}$
$477$
$487$
$497$
$(249)^{2}-(248)^{2}=(249+248)(249-248)$
$=(497)(1)=497$
Hence, $(d)$ is the correct answer.
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=x^{3}-3 x^{2}+4 x+50, g(x)=x-3$
Find the following products:
$\left(\frac{x}{2}+2 y\right)\left(\frac{x^{2}}{4}-x y+4 y^{2}\right)$
If $x=2 y+6,$ then what is the value of $x^{3}-8 y^{3}-36 x y-216 ?$
Find the value of the polynomial $x^{2}-7 x+12$ at.
$x=\frac{1}{2}$
Find $p(-2)$ for the polynomial $p(x)=5 x^{2}-11 x+3$
Confusing about what to choose? Our team will schedule a demo shortly.