The value of $249^{2}-248^{2}$ is
$1^{2}$
$477$
$487$
$497$
$(249)^{2}-(248)^{2}=(249+248)(249-248)$
$=(497)(1)=497$
Hence, $(d)$ is the correct answer.
The following expressions are polynomials? Justify your answer:
$\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7$
Factorise the following quadratic polynomials by splitting the middle term
$x^{2}+14 x+33$
Factorise
$\frac{4 x^{2}}{9}-\frac{1}{25}$
$25 x^{2}+9 y^{2}+64+30 x y-48 y-80 x$
Using suitable identity, evaluate the following:
$999^{2}$
Confusing about what to choose? Our team will schedule a demo shortly.