The value of $\tan 15$ and $\ldots \ldots \ldots \ldots$ are equal.
$\cot 15$
$\cot 75$
$\sec 15$
$\tan 75$
$\tan 15=\cot (90-15)=\cot 75$
$\sin ^{2} 35+\cos ^{2} \theta=1,$ then $\theta=\ldots \ldots \ldots \ldots$
Given that $\alpha+\beta=90^{\circ},$ show that
$\sqrt{\cos \alpha \operatorname{cosec} \beta-\cos \alpha \sin \beta}=\sin \alpha$
$\frac{1}{\sin ^{2} \theta}-1=\ldots \ldots \ldots$
$\cos \theta=\frac{15}{17},$ then the value of $\operatorname{cosec} \theta+\cot \theta $ is ………
$\frac{\sin 60+\cos 30}{1+\sin 30+\cos 60}=\ldots \ldots \ldots$
Confusing about what to choose? Our team will schedule a demo shortly.