$2 \sin(\frac{\pi}{8}) \sin (\frac{2 \pi}{8}) \sin (\frac{3 \pi}{8}) \sin (\frac{5 \pi}{8}) \sin (\frac{6 \pi}{8}) \sin (\frac{7 \pi}{8})$ ની કિમંત મેળવો.
$\frac{1}{4 \sqrt{2}}$
$\frac{1}{4}$
$\frac{1}{8}$
$\frac{1}{8 \sqrt{2}}$
જો $\alpha ,\beta $ એવી રીતે આપેલ છે કે જેથી $\pi < (\alpha - \beta ) < 3\pi $. જો $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ and $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ તો $\cos \frac{{\alpha - \beta }}{2}$ ની કિમંત મેળવો.
$\tan 5x\tan 3x\tan 2x = $
$\sum_{r-1}^{18} cos^2(5r)^o,$ =
જો $\theta = 3\, \alpha$ અને $sin\, \theta =$ $\frac{a}{{\sqrt {{a^2}\,\, + \,\,{b^2}} }}$. થાય તો $a \,cosec\, \alpha - b \,sec\, \alpha$ ની કિમત ............. થાય
જો $\cos A = \cos B\,\,\cos C$ અને $A + B + C = \pi ,$ તો $\cot \,B\,\cot \,C = . . . ..$