જો ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$ તો $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $

  • A

    $\sqrt {\frac{p}{q}} $

  • B

    $\sqrt {\frac{q}{p}} $

  • C

    $\sqrt {pq} $

  • D

    $pq$

Similar Questions

$\sqrt {2 + \sqrt {2 + 2\cos 4\theta } } = $

$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = $

$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}}  =$

  • [IIT 1985]

જો $\alpha $ અને $\beta $ એ સમીકરણ $sin^2\,x + a\, sin\, x + b = 0$ અને $cos^2\,x + c\, cos\, x + d = 0$ ના બીજો હોય તો $sin\,(\alpha + \beta )$ = 

$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $