$^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ = . . .

  • A

    ${2^{4n - 2}} + {( - 1)^n}{2^{2n - 1}}$

  • B

    ${2^{4n - 2}} + {2^{2n - 1}}$

  • C

    ${2^{2n - 1}} + {( - 1)^n}\,{2^{4n - 2}}$

  • D

    એકપણ નહિ.

Similar Questions

જો $n$ એ ધન પૂર્ણાક છે કે જેથી $n \ge 3$,  હોય તો શ્રેણી $1 . n - \frac{{\left( {n\, - \,1} \right)}}{{1\,\,!}} (n - 1) + \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)}}{{2\,\,!}} (n - 2) $$-  \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)\,\,\left( {n\, - \,3} \right)}}{{3\,\,!}} (n - 3) + ......$ ના $n$ પદોનો સરવાળો મેળવો 

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$, તો $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $

$\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ = . . .

જો $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$ હોય,તો $\alpha=............$

  • [JEE MAIN 2023]

જો  $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ જ્યાં ગુ. સા. અ.  $\operatorname(n, m)=1$,હોય,તો  $n+m$ .....................

  • [JEE MAIN 2024]