- Home
- Standard 11
- Mathematics
The value of ${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + ... + $ ${\sin ^2}{85^o} + {\sin ^2}{90^o}$ is equal to
$7$
$8$
$9$
$9\frac{1}{2}$
Solution
(d) Given expression is
${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + ….. + {\sin ^2}{85^o} + {\sin ^2}{90^o}.$
We know that $\sin {90^o} = 1$ or ${\sin ^2}{90^o} = 1$.
Similarly, $\sin {45^o} = \frac{1}{{\sqrt 2 }}{\rm{or}}\,{\rm{si}}{{\rm{n}}^{\rm{2}}}{45^o} = \frac{1}{2}$
and the angles are in $A.P. $ of $18$ terms.
We also know that ${\sin ^2}{85^o} = {[\sin ({90^o} – {5^o})]^2}$$ = {\cos ^2}{5^o}.$
Therefore from the complementary rule, we find
$\therefore$ ${\sin ^2}{5^o} + {\sin ^2}{85^o} = {\sin ^2}{5^o} + {\cos ^2}{5^o} = 1.$
Therefore,
${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + … + {\sin ^2}{85^o} + {\sin ^2}{90^o}$
$ = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) + 1 + \frac{1}{2} = 9\frac{1}{2}$.