The value of $m$, for which the line $y = mx + \frac{{25\sqrt 3 }}{3}$, is a normal to the conic $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$, is

  • A

    $\sqrt 3 $

  • B

    $ - \frac{2}{{\sqrt 3 }}$

  • C

    $ - \frac{{\sqrt 3 }}{2}$

  • D

    $1$

Similar Questions

The point $\mathrm{P}(-2 \sqrt{6}, \sqrt{3})$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having eccentricity $\frac{\sqrt{5}}{2} .$ If the tangent and normal at $\mathrm{P}$ to the hyperbola intersect its conjugate axis at the point $\mathrm{Q}$ and $\mathrm{R}$ respectively, then $QR$ is equal to :

  • [JEE MAIN 2021]

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=576$

If the length of the transverse and conjugate axes of a hyperbola be $8$ and $6$ respectively, then the difference focal distances of any point of the hyperbola will be

 A hyperbola passes through the point $P\left( {\sqrt 2 ,\sqrt 3 } \right)$ has foci at $\left( { \pm 2,0} \right)$. Then the tangent to this hyperbola at  $P$ also passes through the point

  • [JEE MAIN 2017]

For the Hyperbola ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ which of the following remains constant when $\theta $ varies $= ?$

  • [AIEEE 2007]