The value of $m$, for which the line $y = mx + \frac{{25\sqrt 3 }}{3}$, is a normal to the conic $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$, is
$\sqrt 3 $
$ - \frac{2}{{\sqrt 3 }}$
$ - \frac{{\sqrt 3 }}{2}$
$1$
The point $\mathrm{P}(-2 \sqrt{6}, \sqrt{3})$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having eccentricity $\frac{\sqrt{5}}{2} .$ If the tangent and normal at $\mathrm{P}$ to the hyperbola intersect its conjugate axis at the point $\mathrm{Q}$ and $\mathrm{R}$ respectively, then $QR$ is equal to :
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=576$
If the length of the transverse and conjugate axes of a hyperbola be $8$ and $6$ respectively, then the difference focal distances of any point of the hyperbola will be
A hyperbola passes through the point $P\left( {\sqrt 2 ,\sqrt 3 } \right)$ has foci at $\left( { \pm 2,0} \right)$. Then the tangent to this hyperbola at $P$ also passes through the point
For the Hyperbola ${x^2}{\sec ^2}\theta - {y^2}cose{c^2}\theta = 1$ which of the following remains constant when $\theta $ varies $= ?$