The value of a for which the system of equations ; $a^3x + (a +1)^3 y + (a + 2)^3 \, z = 0$ ,$ax + (a + 1) y + (a + 2)\, z = 0$ & $x + y + z = 0$ has a non-zero solution is :
$1$
$0$
$-1$
none of these
Consider system of equations in $x$ , $y$ and $z$
$12x + by + cz = 0$ ; $ax + 24y + cz = 0$ ; $ax + by + 36z = 0$ .
(where $a$ , $b$ , $c$ are real numbers, $a \ne 12$ , $b \ne 24$ , $c \ne 36$ ).
If system of equation has solution and $z \ne 0$, then value of $\frac{1}{{a - 12}} + \frac{2}{{b - 24}} + \frac{3}{{c - 36}}$ is
Set of equations $a + b - 2c = 0,$ $2a - 3b + c = 0$ and $a - 5b + 4c = \alpha $ is consistent for $\alpha$ equal to
If the system of equations
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :
Let $x, y, z > 0$ are respectively $2^{nd}, 3^{rd}, 4^{th}$ term of $G.P.$ and $\Delta = \left| {\begin{array}{*{20}{c}}
{{X^k}}&{{X^{k + 1}}}&{{X^{k + 2}}}\\
{{Y^k}}&{{Y^{k + 1}}}&{{Y^{k + 2}}}\\
{{Z^k}}&{{Z^{k + 1}}}&{{Z^{k + 2}}}
\end{array}} \right| = {\left( {r - 1} \right)^2}\left( {1 - \frac{1}{{{r^2}}}} \right)$ , (where $r$ is common ratio), then $k=$ .......
If the lines $x + 2ay + a = 0, x + 3by + b = 0$ and $x + 4cy + c = 0$ are concurrent, then $a, b$ and $c$ are in :-