Consider the system of linear equations
$-x+y+2 z=0$
$3 x-a y+5 z=1$
$2 x-2 y-a z=7$
Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then
$\mathrm{n}\left(\mathrm{S}_{1}\right)=2, \mathrm{n}\left(\mathrm{S}_{2}\right)=2$
$\mathrm{n}\left(\mathrm{S}_{1}\right)=1, \mathrm{n}\left(\mathrm{S}_{2}\right)=0$
$\mathrm{n}\left(\mathrm{S}_{1}\right)=2, \mathrm{n}\left(\mathrm{S}_{2}\right)=0$
$\mathrm{n}\left(\mathrm{S}_{1}\right)=0, \mathrm{n}\left(\mathrm{S}_{2}\right)=2$
Set of equations $a + b - 2c = 0,$ $2a - 3b + c = 0$ and $a - 5b + 4c = \alpha $ is consistent for $\alpha$ equal to
if $\left| \begin{gathered}
- 6\ \ \,\,1\ \ \,\,\lambda \ \ \hfill \\
\,0\ \ \,\,\,\,3\ \ \,\,7\ \ \hfill \\
- 1\ \ \,\,0\ \ \,\,5\ \ \hfill \\
\end{gathered} \right| = 5948 $, then $\lambda $ is
Three digit numbers $x17, 3y6$ and $12z$ where $x, y, z$ are integers from $0$ to $9$, are divisible by a fixed constant $k$. Then the determinant $\left| {\,\begin{array}{*{20}{c}}x&3&1\\7&6&z\\1&y&2\end{array}\,} \right|$ + $48$ must be divisible by
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ are
How many values of $k $ , systeam of linear equations $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y$$ = 3k - 1$ has no solutions.