- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
medium
$1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}} =$
A
$0$
B
$1$
C
$\sin \,y$
D
$\cos \,y$
Solution
(d) The expression can be written as
$\frac{{1 + \cos y – {{\sin }^2}y}}{{1 + \cos y}} + \frac{{(1 – {{\cos }^2}y) – {{\sin }^2}y}}{{\sin y\,(1 – \cos y)}}$
$ = \frac{{\cos y\,(1 + \cos y)}}{{1 + \cos y}} + 0 = \cos y.$
Standard 11
Mathematics