3.Trigonometrical Ratios, Functions and Identities
medium

 $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}  =$

A

$0$

B

$1$

C

$\sin \,y$

D

$\cos \,y$

Solution

(d) The expression can be written as

$\frac{{1 + \cos y – {{\sin }^2}y}}{{1 + \cos y}} + \frac{{(1 – {{\cos }^2}y) – {{\sin }^2}y}}{{\sin y\,(1 – \cos y)}}$

$ = \frac{{\cos y\,(1 + \cos y)}}{{1 + \cos y}} + 0 = \cos y.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.