The value of the expression
$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2 sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than
${\cos {{36}^o}}$
$\cos 67\frac{{{1^o}}}{2}$
$\cos {9^o}$
$\cos {72^0}$
If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to
If $K = sin^6x + cos^6x$, then $K$ belongs to the interval
The number of $x \in [0,2\pi ]$ for which $\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x} - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ is
If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =
If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $