The value of the expression

$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2  sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than

  • A

    ${\cos {{36}^o}}$

  • B

    $\cos 67\frac{{{1^o}}}{2}$

  • C

    $\cos {9^o}$

  • D

    $\cos {72^0}$

Similar Questions

If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to

If $K = sin^6x + cos^6x$, then $K$ belongs to the interval

The number of  $x \in  [0,2\pi ]$  for which $\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x}  - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ is

  • [JEE MAIN 2016]

If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =

If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $

  • [IIT 1963]