Statement $-1:$ The number of common solutions of the trigonometric equations $2\,sin^2\,\theta - cos\,2\theta = 0$ and $2 \,cos^2\,\theta - 3\,sin\,\theta = 0$ in the interval $[0, 2\pi ]$ is two.
Statement $-2:$ The number of solutions of the equation, $2\,cos^2\,\theta - 3\,sin\,\theta = 0$ in the interval $[0, \pi ]$ is two.
Statement $-1$ is true; Statement $-2$ is true;Statement $-2$ is a correct explanation for statement $-1.$
Statement $-1$ is true; Statement $-2$ is true;Statement $-2$ is not a correct explanation for statement $-1.$
Statement $-1$ is false; Statement $-2$ is true.
Statement $-1$ is true; Statement $-2$ is false.
If $A, B, C, D$ are the angles of a cyclic quadrilateral taken in order, then
$cos(180^o + A) + cos(180^o -B) + cos(180^o -C) -sin(90^o -D)=$
If $\operatorname{cosec}^2(\alpha+\beta)-\sin ^2(\beta-\alpha)+\sin ^2(2 \alpha-\beta)=\cos ^2(\alpha-\beta)$ where $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, then $\sin (\alpha-\beta)$ is equal to
No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$
Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$
The set of values of $x$ for which the expression $\frac{{\tan 3x - \tan 2x}}{{1 + \tan 3x\tan 2x}} = 1$, is