The value of the sum of two vectors $\overrightarrow A $ and $\overrightarrow B $ with $\theta $ as the angle between them is
$\sqrt {{A^2} + {B^2} + 2AB\cos \theta } $
$\sqrt {{A^2} - {B^2} + 2AB\cos \theta } $
$\sqrt {{A^2} + {B^2} - 2AB\sin \theta } $
$\sqrt {{A^2} + {B^2} + 2AB\sin \theta } $
Match List$- I$ with List$- II.$
$[Image]$
Choose the correct answer from the options given below :
The resultant of these forces $\overrightarrow{O P}, \overrightarrow{O Q}, \overrightarrow{O R}, \overrightarrow{O S}$ and $\overrightarrow{{OT}}$ is approximately $\ldots \ldots {N}$.
[Take $\sqrt{3}=1.7, \sqrt{2}=1.4$ Given $\hat{{i}}$ and $\hat{{j}}$ unit vectors along ${x}, {y}$ axis $]$
Which pair of the following forces will never give resultant force of $2\, N$
In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$