- Home
- Standard 11
- Chemistry
$25\,^oC$ તાપમાને $CaCO_3$ અને $CaC_2O_4$ના $K_{sp}$ના મૂલ્યો અનુક્રમે $4.7 \times 10^{-9}$ અને $1.3 \times 10^{-9}$ છે. જો આ બંનેના મિશ્રણને પાણી સાથે ધોવામાં આવે તો પાણીમાં $Ca^{2+}$ આયનની સાંદ્રતા ......... $\times 10^{-5}\, M$ થશે?
$5.831$
$6.856$
$3.606$
$7.746$
Solution
$\mathrm{CaCO}_{3} \rightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{3}^{2-}$
$\quad \quad \quad \quad \quad \quad x \quad \quad x$
$\mathrm{CaC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
$\quad \quad \quad \quad \quad \quad y \quad \quad y$
Now, $\left[\mathrm{Ca}^{2+}\right]=x+y$
and $x(x+y)=4.7 \times 10^{-9}$
$y(x+y)=1.3 \times 10^{-9}$
Dividing equation $(i)$ and $(ii)$ we get $\frac{x}{y}=3.6$
$\therefore \quad x=3.6 y$
Putting this value in equation $(ii)$, we get
$y(3.6 y+y)=1.3 \times 10^{-9}$
On solving, we get $y=1.68 \times 10^{-5}$ and $x=3.6 \times 1.68 \times 10^{-5}=6.048 \times 10^{-5}$
$\therefore \quad\left[\mathrm{Ca}^{2+}\right]=(x+y)=\left(1.68 \times 10^{-5}\right)+\left(6.048 \times 10^{-5}\right)$
$\therefore \quad\left[\mathrm{Ca}^{2+}\right]=7.728 \times 10^{-5}\, \mathrm{M}$