- Home
- Standard 11
- Physics
The velocity of a body of mass $2 \,kg $ as a function of $t$ is given by $\vec v (t)\, = \,2t\,\hat i\, + \,{t^2}\hat j\,$. Find the momentum and the force acting on it, at time $t = 2\,\sec $.
Solution
Mass of the body $m=2 \mathrm{~kg}$.
Velocity of the body $\mathrm{v}(t)=(2 \mathrm{t}) \hat{i}+\left(t^{2}\right) \hat{j}$
Velocity of the body at $t=2 \mathrm{~s}$.
$v =2(2) \hat{i}+(2)^{2} \hat{j}$
$=4 \hat{i}+4 \hat{j}$
Momentum of body $\vec{p}=m v=2(4 \hat{i}+4 \hat{j})$
$=8 \hat{i}+8 \hat{j} \mathrm{~kg} / \mathrm{ms}$
Acceleration of body,
$a=\frac{d v}{d t}$
$=\frac{d}{d t}\left(2 t \hat{i}+t^{2} \hat{j}\right)$
$=(2 \hat{i}+2 t \hat{j})$
$\text { At } t=2 s$
$a=(2 \hat{i}+2 \times 2 \hat{j})$
$\quad=(2 \hat{i}+4 \hat{j})$
Force acting on the body $(\mathrm{F})=m \mathrm{a}$
$=2(2 \hat{i}+4 \hat{j})$
$=(4 \hat{i}+8 \hat{j}) \mathrm{N}$