4-1.Newton's Laws of Motion
medium

The velocity of a body of mass $2 \,kg $ as a function of $t$ is given by $\vec v (t)\, = \,2t\,\hat i\, + \,{t^2}\hat j\,$. Find the momentum and the force acting on it, at time $t = 2\,\sec $.

Option A
Option B
Option C
Option D

Solution

Mass of the body $m=2 \mathrm{~kg}$.

Velocity of the body $\mathrm{v}(t)=(2 \mathrm{t}) \hat{i}+\left(t^{2}\right) \hat{j}$

Velocity of the body at $t=2 \mathrm{~s}$.

$v =2(2) \hat{i}+(2)^{2} \hat{j}$

$=4 \hat{i}+4 \hat{j}$

Momentum of body $\vec{p}=m v=2(4 \hat{i}+4 \hat{j})$

$=8 \hat{i}+8 \hat{j} \mathrm{~kg} / \mathrm{ms}$

Acceleration of body,

$a=\frac{d v}{d t}$

$=\frac{d}{d t}\left(2 t \hat{i}+t^{2} \hat{j}\right)$

$=(2 \hat{i}+2 t \hat{j})$

$\text { At } t=2 s$

$a=(2 \hat{i}+2 \times 2 \hat{j})$

$\quad=(2 \hat{i}+4 \hat{j})$

Force acting on the body $(\mathrm{F})=m \mathrm{a}$

$=2(2 \hat{i}+4 \hat{j})$

$=(4 \hat{i}+8 \hat{j}) \mathrm{N}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.