- Home
- Standard 11
- Physics
The velocity-time graph of a particle in one-dimensional motion is shown in Figure.
Which of the following formulae are correct for describing the motton of the particle over the time-interval $t_1$ to $t_2$
$(a)$ $x\left(t_{2}\right)=x\left(t_{1}\right)+v\left(t_{1}\right)\left(t_{2}-t_{1}\right)+(1 / 2) a\left(t_{2}-t_{1}\right)^{2}$
$(b)$ $v\left(t_{2}\right)=v\left(t_{1}\right)+a\left(t_{2}-t_{1}\right)$
$(c)$ $v_{\text {average}}=\left(x\left(t_{2}\right)-x\left(t_{1}\right)\right) /\left(t_{2}-t_{1}\right)$
$(d)$ $a_{\text {average}}=\left(v\left(t_{2}\right)-v\left(t_{1}\right)\right) /\left(t_{2}-t_{1}\right)$
$(e)$ $x\left(t_{2}\right)=x\left(t_{1}\right)+v_{\text {average}}\left(t_{2}-t_{1}\right)+(2 / 2) a_{\text {average}}\left(t_{2}-t_{1}\right)^{2}$
$(f)$ $x\left(t_{2}\right)-x\left(t_{1}\right)=$ area under the $v -t$ curve bounded by the $t -$axis and the dotted line shown.

Solution
The correct formulae describing the motion of the particle are (c), (d) and, (f)
The given graph has a non-uniform slope.
Hence, the formulae given in (a), (b), and (e) cannot describe the motion of the particle.
Only relations given in (c), (d), and (f) are correct equations of motion.