The work done by a force $\vec F\, = \,( - \,6{x^3}\,\hat i)N$ , in displacing a particle from $x = 4\,m$ to $x = -\,2\,m$ is .............. $\mathrm{J}$
$360$
$240$
$-240$
$-360$
A force acts on a $3\, gm$ particle in such a way that the position of the particle as a function of time is given by $x = 3t -4t^2 + t^3$ , where $x$ is in $meters$ and $t$ is in $seconds$ . The work done during the first $4\, second$ is ................. $\mathrm{mJ}$
The force $F$ acting on a body moving in a circle of radius $r$ is always perpendicular to the instantaneous velocity $v$. The work done by the force on the body in one complete rotation is :
If the potential energy of a gas molecule is
$U = \frac{M}{{{r^6}}} - \frac{N}{{{r^{12}}}}$,
$M$ and $N$ being positive constants, then the potential energy at equilibrium must be
The work done by a force $\vec F = \left( { - 6{x^3}\hat i} \right)\,N$ in displacing a particle from $x = 4\,m$ to $x = -2\,m$ is ............... $\mathrm{J}$
A particle of mass $m$ at rest is acted upon by a force $P$ for a time $t.$ Its kinetic energy after an interval $t$ is