Thepoints resembling equal potentials are
$P$ and $Q$
$S$ and $Q$
$S$ and $R$
$P$ and $R$
Draw an equipotential surface for dipole.
What is an equipotential surface ? Draw an equipotential surfaces for a
$(1)$ single point charge
$(2)$ charge $+ \mathrm{q}$ and $- \mathrm{q}$ at few distance (dipole)
$(3)$ two $+ \mathrm{q}$ charges at few distance
$(4)$ uniform electric field.
Describe schematically the equipotential surfaces corresponding to
$(a)$ a constant electric field in the $z-$direction,
$(b)$ a field that uniformly increases in magnitude but remains in a constant (say, $z$) direction,
$(c)$ a single positive charge at the origin, and
$(d)$ a uniform grid consisting of long equally spaced parallel charged wires in a plane
The diagrams below show regions of equipotentials.A positive charge is moved from $A$ to $B$ in each diagram.
A point charge $+Q$ is placed just outside an imaginary hemispherical surface of radius $R$ as shown in the figure. Which of the following statements is/are correct?
(IMAGE)
$[A]$ The electric flux passing through the curved surface of the hemisphere is $-\frac{\mathrm{Q}}{2 \varepsilon_0}\left(1-\frac{1}{\sqrt{2}}\right)$
$[B]$ Total flux through the curved and the flat surfaces is $\frac{Q}{\varepsilon_0}$
$[C]$ The component of the electric field normal to the flat surface is constant over the surface
$[D]$ The circumference of the flat surface is an equipotential